\(\int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx\) [619]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 244 \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx=\frac {\left (2 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 \left (a^2-b^2\right ) d}-\frac {b \left (4 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a^3 \left (a^2-b^2\right ) d}+\frac {b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a^3 (a-b) (a+b)^2 d}+\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))} \]

[Out]

b^2*sin(d*x+c)*sec(d*x+c)^(1/2)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))+(2*a^2-3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(
1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/(a^2-b^2)/d-b*(4*a^
2-3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2
)*sec(d*x+c)^(1/2)/a^3/(a^2-b^2)/d+b^2*(5*a^2-3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticP
i(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^3/(a-b)/(a+b)^2/d

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3932, 4191, 3934, 2884, 3872, 3856, 2719, 2720} \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx=\frac {b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac {\left (2 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d \left (a^2-b^2\right )}-\frac {b \left (4 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^3 d \left (a^2-b^2\right )}+\frac {b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^3 d (a-b) (a+b)^2} \]

[In]

Int[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^2),x]

[Out]

((2*a^2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a^2 - b^2)*d) - (b*(4*
a^2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^3*(a^2 - b^2)*d) + (b^2*(5*a^
2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^3*(a - b)*(a +
b)^2*d) + (b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3932

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)
*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m + 1
)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
&& LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4191

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac {\int \frac {-a^2+\frac {3 b^2}{2}+a b \sec (c+d x)-\frac {1}{2} b^2 \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{a \left (a^2-b^2\right )} \\ & = \frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac {\int \frac {a \left (-a^2+\frac {3 b^2}{2}\right )-\left (-a^2 b+b \left (-a^2+\frac {3 b^2}{2}\right )\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a^3 \left (a^2-b^2\right )}+\frac {\left (b^2 \left (5 a^2-3 b^2\right )\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )} \\ & = \frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac {\left (2 a^2-3 b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a^2 \left (a^2-b^2\right )}-\frac {\left (b \left (4 a^2-3 b^2\right )\right ) \int \sqrt {\sec (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )}+\frac {\left (b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{2 a^3 \left (a^2-b^2\right )} \\ & = \frac {b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a^3 (a-b) (a+b)^2 d}+\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac {\left (\left (2 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )}-\frac {\left (b \left (4 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a^3 \left (a^2-b^2\right )} \\ & = \frac {\left (2 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 \left (a^2-b^2\right ) d}-\frac {b \left (4 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a^3 \left (a^2-b^2\right ) d}+\frac {b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a^3 (a-b) (a+b)^2 d}+\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.61 (sec) , antiderivative size = 319, normalized size of antiderivative = 1.31 \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx=\frac {\frac {4 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) (b+a \cos (c+d x)) \sqrt {\sec (c+d x)}}+\frac {2 \cot (c+d x) \left (2 a^3 \sec ^{\frac {3}{2}}(c+d x)-3 a b^2 \sec ^{\frac {3}{2}}(c+d x)-2 a^3 \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)+3 a b^2 \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)-2 a \left (2 a^2-3 b^2\right ) E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {-\tan ^2(c+d x)}+2 a \left (2 a^2+a b-3 b^2\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}-10 a^2 b \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}+6 b^3 \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}\right )}{a^3 (a-b) (a+b)}}{4 d} \]

[In]

Integrate[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^2),x]

[Out]

((4*b^2*Sin[c + d*x])/(a*(a^2 - b^2)*(b + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]) + (2*Cot[c + d*x]*(2*a^3*Sec[c +
 d*x]^(3/2) - 3*a*b^2*Sec[c + d*x]^(3/2) - 2*a^3*Cos[2*(c + d*x)]*Sec[c + d*x]^(3/2) + 3*a*b^2*Cos[2*(c + d*x)
]*Sec[c + d*x]^(3/2) - 2*a*(2*a^2 - 3*b^2)*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 2
*a*(2*a^2 + a*b - 3*b^2)*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] - 10*a^2*b*EllipticPi
[-(b/a), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 6*b^3*EllipticPi[-(b/a), ArcSin[Sqrt[Sec[c +
d*x]]], -1]*Sqrt[-Tan[c + d*x]^2]))/(a^3*(a - b)*(a + b)))/(4*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(808\) vs. \(2(308)=616\).

Time = 14.77 (sec) , antiderivative size = 809, normalized size of antiderivative = 3.32

method result size
default \(\text {Expression too large to display}\) \(809\)

[In]

int(1/(a+b*sec(d*x+c))^2/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/a^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(2*b*EllipticF(cos(1/2*d*x+1/2*c),2^(1
/2))+a*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-2/a^3*b^3*(a^2/b/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*a*cos(1/2*d*x+1/2*c)^2-a+b)-1/2/(a+b)/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2
*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*
c),2^(1/2))+1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(co
s(1/2*d*x+1/2*c),2^(1/2))-1/2/b/(a^2-b^2)/(a^2-a*b)*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+
1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))
+3/2*b/(a^2-b^2)/(a^2-a*b)*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2)))-6/a^2*b^2/(a^2-a*b)*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(1/(a+b*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx=\int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right )^{2} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate(1/(a+b*sec(d*x+c))**2/sec(d*x+c)**(1/2),x)

[Out]

Integral(1/((a + b*sec(c + d*x))**2*sqrt(sec(c + d*x))), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+b*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

Giac [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+b*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx=\int \frac {1}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(1/((a + b/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2)),x)

[Out]

int(1/((a + b/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2)), x)